STRUCTURED QUERRY LANGUAGE

INTRODUCTION

SQL (Simple Query Language) is a database computer language designed for managing data in relational database management systems (RDBMS). Its scope includes data query and update, schema creation and modification, and data access control. SQL was one of the first languages for Edgar F. Codd's relational model in his influential 1970 paper, "A Relational Model of Data for Large Shared Data Banks" and became the most widely used language for relational databases.
SQL was developed at IBM by Andrew Richardson, Donald C. Messerly and Raymond F. Boyce in the early 1970s. This version, initially called SEQUEL, was designed to manipulate and retrieve data stored in IBM's original relational database product, System R. IBM patented this version of SQL in 1985

SQL is a standard language for accessing and manipulating databases. SQL is not case sensitive

You can use SQL to access and manipulate data in MySQL, SQL Server, MS Access, Oracle, Sybase, DB2, and other database systems.

· SQL stands for Structured Query Language

· SQL lets you access and manipulate databases

· SQL is an ANSI (American National Standards Institute) standard

SQL can do the following:-

· SQL can execute queries against a database

· SQL can retrieve data from a database

· SQL can insert records in a database

· SQL can update records in a database

· SQL can delete records from a database

· SQL can create new databases

· SQL can create new tables in a database

· SQL can create stored procedures in a database

· SQL can create views in a database

· SQL can set permissions on tables, procedures, and views

RDBMS

RDBMS stands for Relational Database Management System.

RDBMS is the basis for SQL, and for all modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

The data in RDBMS is stored in database objects called tables.

A table is a collection of related data entries and it consists of columns and rows.

PROCESSING CAPABILITIES OF SQL

The SQL has proved to be a language that can be used by both casual users as well as skilled programmers. It offers a variety of processing capabilities, simpler ones of which may be used by the former and more complex by the latter class of users. The various processing capabilities of SQL are:-

1. Data Manipulation Language (DML)

2. Data Definition Language (DDL)
3. Data Control Language (DCL)

4. Data Transaction Language (DTL)

1. Data Manipulation Language (DML):- Different operations performed in DML are:-

a. Retrieval of information stored in database.

b. Insertion operation.

c. Deletion operation.

d. Updation.

The query and update commands form the DML part of SQL:

· SELECT - extracts data from a database

· UPDATE - updates data in a database

· DELETE - deletes data from a database

· INSERT INTO - inserts new data into a database

2. Data Definition Language (DDL):- It specifies database schema that is to define the structure of database. It is used to create an object, that is, a table, a particular structure of an object and also to drop the object created.

The DDL part of SQL permits database tables to be created or deleted. It also defines indexes (keys), specify links between tables, and impose constraints between tables. The most important DDL statements in SQL are:

· CREATE DATABASE - creates a new database

· ALTER DATABASE - modifies a database

· CREATE TABLE - creates a new table

· ALTER TABLE - modifies a table

· DROP TABLE - deletes a table

· CREATE INDEX - creates an index (search key)

· DROP INDEX - deletes an index
3. Data Control Language (DCL):- Different commands of DCL are-

· Create users – It is used to create new users.
· Grant privileges – It is used to allow specified users to perform specified tasks.
· Revoking – It is used to cancel previously granted or denied permissions.
· Drop user – It is used to drop or delete the users which are created by ‘create user’ command
4. Data Transaction Language (DTL):- A transaction is a logical unit of work. All changes made permanent to be a database, can be referred to as transaction. Transaction changes can be made permanently only if they are permitted. The most important DTL statements in SQL are:

· Rollback – It causes all data changes since the last COMMIT or ROLLBACK to be discarded, leaving the state of the data as it was prior to those changes.
· Commit – It causes all data changes in a transaction to be made permanent.
· Savepoint – It saves all data. It acts as a break point. It does not save in memory.
DIFFERENT COMMANDS OF SQL

1. The CREATE TABLE Statement

The CREATE TABLE statement is used to create a table in a database.

Syntax

	CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name3 data_type,
....
)

The data type specifies what type of data the column can hold.

Example

Now we want to create a table called "Persons" that contains five columns: P_Id, LastName, FirstName, Address, and City.

	CREATE TABLE Persons
(
P_Id int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)
)

The P_Id column is of type int and will hold a number. The LastName, FirstName, Address, and City columns are of type varchar with a maximum length of 255 characters.

The empty "Persons" table will now look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	
	
	
	
	

The empty table can be filled with data with the INSERT INTO statement

2. The INSERT INTO Statement

The INSERT INTO statement is used to insert a new row in a table.

Syntax
It is possible to write the INSERT INTO statement in two forms.

The first form doesn't specify the column names where the data will be inserted, only their values:

	INSERT INTO table_name
VALUES (value1, value2, value3,...)

The second form specifies both the column names and the values to be inserted:

	INSERT INTO table_name (column1, column2, column3,...)
VALUES (value1, value2, value3,...)

Example

We have the following "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

Now we want to insert a new row in the "Persons" table.

We use the following SQL statement:

	INSERT INTO Persons
VALUES (4,'Kedia', 'Pooja', 'Shashi Nagar 8', 'Uttar Pradesh')

The "Persons" table will now look like this:

	.P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

Insert Data Only in Specified Columns

It is also possible to only add data in specific columns.

The following SQL statement will add a new row, but only add data in the "P_Id", "LastName" and the "FirstName" columns:

	INSERT INTO Persons (P_Id, LastName, FirstName)
VALUES (5, 'Tyagi', 'Priya')

The "Persons" table will now look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

	5
	Tyagi
	Priya
	
	

3. The SELECT Statement

The SELECT statement is used to select data from a database.

The result is stored in a result table, called the result-set.

Syntax

	SELECT column_name(s)
FROM table_name

And
	SELECT * FROM table_name

The SQL SELECT DISTINCT Statement

In a table, some of the columns may contain duplicate values. This is not a problem; however, sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

Syntax

	SELECT DISTINCT column name(s)
FROM table name

Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

Now we want to select only the distinct values from the column named "City" from the table above.

We use the following SELECT statement:

	SELECT DISTINCT City FROM Persons

The result-set will look like this:

	City

	Uttar Pradesh

	Hyderabad

	Palampur

4. The ALTER Statement

The ALTER Statement allows us to add, modify, or drop a column from an existing table.

To add a column to a table

Syntax

	ALTER TABLE <table_name>

ADD

<column name><datatype><size>;

Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

Now we want to add a new column AGE,

We use the following ALTER statement:

	ALTER TABLE Persons

ADD

(AGE number(100))

The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City
	AGE

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh
	

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad
	

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur
	

To modify existing column of a table

Syntax

	ALTER TABLE <table name>

MODIFY

(columname newdatatype (new size));

5. The DROP Statement

The DROP Statement is used to remove an entire table from the database.

A table with rows in it can not be dropped.
Syntax

	DROP TABLE table name

Example

	DROP TABLE Persons

6. The RENAME Statement

We can rename any table by using RENAME command. The data will not be lost. Only the table name will be changed to new name. Here is the command to change the name of a table.
Syntax

	RENAME < table name> TO <new table name>

Example

	RENAME Persons TO Students

7. The DELETE Statement

The DELETE statement is used to delete rows in a table.

Syntax

	DELETE FROM table_name
WHERE some_column=some_value

Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

	5
	Tyagi
	Priya
	Rohini
	Delhi

Now we want to delete the person "Tyagi, Priya" in the "Persons" table.

We use the following SQL statement:

	DELETE FROM Persons
WHERE LastName='Tyagi' AND FirstName='Priya'

The "Persons" table will now look like this:

	.P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

Delete All Rows

It is possible to delete all rows in a table without deleting the table. This means that the table structure, attributes, and indexes will be intact:

	DELETE FROM table_name

or

DELETE * FROM table_name

8. The UPDATE Statement

The UPDATE statement is used to update existing records in a table.

Syntax

	UPDATE table_name
SET column1=value, column2=value2,...
WHERE some_column=some_value

Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

	5
	Tyagi
	Priya
	
	

Now we want to update the person "Tyagi Priya" in the "Persons" table.

We use the following SQL statement:

	UPDATE Persons
SET Address='Rohini', City='Delhi'
WHERE LastName='Tyagi' AND FirstName='Priya'

The "Persons" table will now look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

	5
	Tyagi
	Priya
	Rohini
	Delhi

9. The WHERE Clause

The WHERE clause is used to extract only those records that fulfill a specified criterion.

Syntax

	SELECT column_name(s)
FROM table_name
WHERE column_name operator value

Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

Now we want to select only the persons living in the city "Uttar Pradesh" from the table above.

We use the following SELECT statement:

	SELECT * FROM Persons
WHERE City='Uttar Pradesh'

The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

Operators Allowed in the WHERE Clause

With the WHERE clause, the following operators can be used:

	Operator
	Description

	=
	Equal

	<>
	Not equal

	>
	Greater than

	<
	Less than

	>=
	Greater than or equal

	<=
	Less than or equal

	BETWEEN
	Between an inclusive range

	LIKE
	Search for a pattern

	IN
	If you know the exact value you want to return for at least one of the columns

10. The AND & OR Operators

The AND operator displays a record if both the first condition and the second condition is true.

The OR operator displays a record if either the first condition or the second condition is true.

AND Operator Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

Now we want to select only the persons with the first name equal to "Priyanka" AND the last name equal to "Agarwal":

We use the following SELECT statement:

	SELECT * FROM Persons
WHERE FirstName='Priyanka'
AND LastName='Agarwal'

The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colny 32
	Uttar Pradesh

OR Operator Example

Now we want to select only the persons with the first name equal to "Priyanka" OR the first name equal to "Nishtha":

We use the following SELECT statement:

	SELECT * FROM Persons
WHERE FirstName='Priyanka'
OR FirstName='Nishtha'

The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colny 32
	Uttar Pradesh

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

Combining AND & OR

We can also combine AND and OR (use parenthesis to form complex expressions).

Now we want to select only the persons with the last name equal to "Agarwal" AND the first name equal to "Priyanka" OR to "Sahithi":

We use the following SELECT statement:

	SELECT * FROM Persons WHERE
LastName='Agarwal'
AND (FirstName='Priyanka' OR FirstName='Sahithi')

The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colny 32
	Uttar Pradesh

11. The ORDER BY Keyword

The ORDER BY keyword is used to sort the result-set by a specified column.

The ORDER BY keyword sorts the records in ascending order by default.

If you want to sort the records in a descending order, you can use the DESC keyword.

Syntax

	SELECT column name(s)
FROM table name
ORDER BY column name(s) ASC|DESC

Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

Now we want to select all the persons from the table above, however, we want to sort the persons by their last name.

We use the following SELECT statement:

	SELECT * FROM Persons
ORDER BY LastName

The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

ORDER BY DESC Example

Now we want to select all the persons from the table above, however, we want to sort the persons descending by their last name.

We use the following SELECT statement:

	SELECT * FROM Persons
ORDER BY LastName DESC

The result-set will look like this:

	P_Id
	LastName
	FirstName
	Address
	City

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh

12. The DESCRIBE Statement

The DESCRIBE Statement is used to list all of the fields in a table and the data format of each field.
Syntax

	DESCRIBE < table name>

13. The GROUPBY Statement

The GROUPBY statement is used in conjunction with the aggregate functions to group the result-set by one or more columns.

Syntax

	SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

Example

The "Persons" table:

	P_Id
	LastName
	FirstName
	Address
	City
	Marks

	1
	Agarwal
	Priyanka
	Teachers Colony 32
	Uttar Pradesh
	85

	2
	Reddy
	Sahithi
	Red Hill 24
	Hyderabad
	85

	3
	Goel
	Nishtha
	Shastri Nagar 16
	Palampur
	79

	4
	Kedia
	Pooja
	Shashi Nagar 8
	Uttar Pradesh
	83

	SELECT Marks

FROM Persons

GROUPBY Marks

The result set will look like this-
	Marks

	79

	83

	85

SQL Comparison Keywords

There are other comparison keywords available in sql which are used to enhance the search capabilities of a sql query. They are "IN", "BETWEEN...AND", "IS NULL", "LIKE".

	Comparision Operators
	Description

	LIKE
	column value is similar to specified character(s).

	IN
	column value is equal to any one of a specified set of values.

	BETWEEN...AND
	column value is between two values, including the end values specified in the range.

	IS NULL
	column value does not exist.

SQL LIKE Operator

The LIKE operator is used to list all rows in a table whose column values match a specified pattern. It is useful when you want to search rows to match a specific pattern, or when you do not know the entire value. For this purpose we use a wildcard character '%'.

For example: To select all the students whose name begins with 'S'

SELECT first_name, last_name
FROM student_details
WHERE first_name LIKE 'S%';
The output would be similar to:

	first_name
	last_name

	Stephen
	Fleming

	Shekar
	Gowda

The above select statement searches for all the rows where the first letter of the column first_name is 'S' and rest of the letters in the name can be any character.

There is another wildcard character you can use with LIKE operator. It is the underscore character, ' _ ' . In a search string, the underscore signifies a single character.

For example: to display all the names with 'a' second character,

SELECT first_name, last_name
FROM student_details
WHERE first_name LIKE '_a%';

The output would be similar to:

	first_name
	last_name

	Rahul
	Sharma

NOTE:Each underscore act as a placeholder for only one character. So you can use more than one underscore. Eg: ' __i% '-this has two underscores towards the left, 'S__j%' - this has two underscores between character 'S' and 'i'.

SQL BETWEEN ... AND Operator

The operator BETWEEN and AND, are used to compare data for a range of values.

For Example: to find the names of the students between age 10 to 15 years, the query would be like,

SELECT first_name, last_name, age
FROM student_details
WHERE age BETWEEN 10 AND 15;
The output would be similar to:

	first_name
	last_name
	age

	Rahul
	Sharma
	10

	Anajali
	Bhagwat
	12

	Shekar
	Gowda
	15

SQL IN Operator:

The IN operator is used when you want to compare a column with more than one value. It is similar to an OR condition.

For example: If you want to find the names of students who are studying either Maths or Science, the query would be like,

SELECT first_name, last_name, subject
FROM student_details
WHERE subject IN ('Maths', 'Science');
The output would be similar to:

	first_name
	last_name
	subject

	Anajali
	Bhagwat
	Maths

	Shekar
	Gowda
	Maths

	Rahul
	Sharma
	Science

	Stephen
	Fleming
	Science

You can include more subjects in the list like ('maths','science','history')

NOTE:The data used to compare is case sensitive.

SQL IS NULL Operator

A column value is NULL if it does not exist. The IS NULL operator is used to display all the rows for columns that do not have a value.

For Example: If you want to find the names of students who do not participate in any games, the query would be as given below

SELECT first_name, last_name
FROM student_details
WHERE games IS NULL
There would be no output as we have every student participate in a game in the table student_details, else the names of the students who do not participate in any games would be displayed.

SQL Dates
As long as your data contains only the date portion, your queries will work as expected. However, if a time portion is involved, it gets complicated.

Before talking about the complications of querying for dates, we will look at the most important built-in functions for working with dates.

Date Functions
The following table lists the most important built-in date functions in MySQL:

	Function
	Description

	NOW()
	Returns the current date and time

	CURDATE()
	Returns the current date

	CURTIME()
	Returns the current time

	DATE()
	Extracts the date part of a date or date/time expression

	EXTRACT()
	Returns a single part of a date/time

	DATE_ADD()
	Adds a specified time interval to a date

	DATE_SUB()
	Subtracts a specified time interval from a date

	DATEDIFF()
	Returns the number of days between two dates

	DATE_FORMAT()
	Displays date/time data in different formats

 Date Functions
The following table lists the most important built-in date functions in SQL Server:

	Function
	Description

	GETDATE()
	Returns the current date and time

	DATEPART()
	Returns a single part of a date/time

	DATEADD()
	Adds or subtracts a specified time interval from a date

	DATEDIFF()
	Returns the time between two dates

	CONVERT()
	Displays date/time data in different formats

SQL Date Data Types
Database comes with the following data types for storing a date or a date/time value in the database:

· DATE - format YYYY-MM-DD

· DATETIME - format: YYYY-MM-DD HH:MM:SS

· TIMESTAMP - format: YYYY-MM-DD HH:MM:SS

· YEAR - format YYYY or YY

Working with Dates
Assume we have the following "Orders" table:

	OrderId
	ProductName
	OrderDate

	1
	Geitost
	2008-11-11

	2
	Camembert Pierrot
	2008-11-09

	3
	Mozzarella di Giovanni
	2008-11-11

	4
	Mascarpone Fabioli
	2008-10-29

Now we want to select the records with an OrderDate of "2008-11-11" from the table above.

We use the following SELECT statement:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

The result-set will look like this:

	OrderId
	ProductName
	OrderDate

	1
	Geitost
	2008-11-11

	3
	Mozzarella di Giovanni
	2008-11-11

Now, assume that the "Orders" table looks like this (notice the time component in the "OrderDate" column):

	OrderId
	ProductName
	OrderDate

	1
	Geitost
	2008-11-11 13:23:44

	2
	Camembert Pierrot
	2008-11-09 15:45:21

	3
	Mozzarella di Giovanni
	2008-11-11 11:12:01

	4
	Mascarpone Fabioli
	2008-10-29 14:56:59

If we use the same SELECT statement as above:

SELECT * FROM Orders WHERE OrderDate='2008-11-11'

we will get no result! This is because the query is looking only for dates with no time portion.

PAGE

