Riemann Integral

Historically the concept of integration came into existence as a means of evaluating area under a curve, i.e. in compliance with a geometrical need. The first rigorous approach quite naturally therefore started based on intuitive ideas of sum and in effect as the limit of a sum, now-a-days known as Riemann sum. But when the limitation of this approach was exposed through different situations, a rigorous arithmetic approach was contemplated by G.F.B. Riemann (1826-1866) with remarkable success. This approach is now known as Riemann’s theory of integration and plays a fundamental role in analysis.
	
SOME DEFINITIONS
Let {a, b}, a > b be a closed interval of R.
Definition : A partition of [a, b] is defined as a finite set of points {x0,  x1, ..... xr-1, xr,….., xn} where a = x0  x1 x2 …….xr-1 xr……… xn-1 xn  = b and will be denoted by P. 
       This gives us a finite collection of non-overlapping closed intervals [xr-1 , xr] (r = 1,2,……,n) whose union is [a, b]
       The set of all partitions will be usually denoted by P [a, b]or simply P, if there is no chance of confusion with regard to the interval.
       The subintervals associated with the partition P = { x0,  x1, ..... xr-1, xr,….., xn } will be usually denoted as I1 = [x0,  x1], I2 = [x1 , x2]……In = [xn-1 , xn  ]. The length of the interval Ir = [xr-1 , xr] wil be denoted by r .
           Thus  r = xr – 1. Clearly = b-a.  
Definition: A partition P*   is called a refinement  of the partition P if P P* .
Observation 1: Clearly, if P1, P2  P [a, b] then P1 P2  is a refinement of  P1  and also of P2.
Observation 2: For every positive number  we can find a partition P P [a, b] with 
Observation 3: If P* is a refinement of P , then
                                                                  
Observation 4: If P** is a refinement of P*  and P*  is a refinement of [a, b], then P**  is a refinement of P.
Observation 5: If P  = {x0, x1, x2, ….. ,xn} is a partition of [a, b] then n → ∞ does not mean ∞→ 0.
Example 1: The set P  = {0, 1/4, 3/4, 1} is a partition of [0, 1]. The set P* = {1/4, 1/2, 3/4} is a refinement of P, but P’ = {0, 1/3, 2/3, 1} is not a refinement of P.
        Note,                       =  ½ , = ¼ ,  =  .
Definition  : Let ƒ : [a, b]→R be bounded and M  and m be the upper and lower bounds of ƒ on [a, b] respectively. Now, if Mr  and mr  denote the upper and lower bounds of ƒ on Ir = [xr-1, xr], then clearly
                                                                m  mr    MrM                                                      for r = 1,2, ……,n
The sums U (P, ƒ) = rr  and L(P, ƒ) = rr are called respectively the upper and lower sums of ƒ for the partition of P. The sum
                                                           W (P, ƒ) = U (P, ƒ)  L (P, ƒ) = r  mr)r
is called the oscillatory sum  of ƒ for the partition P.
The numbers inf U (P, ƒ) and sup L (P, ƒ) are called respectively the upper  and lower  integrals of ƒover [a, b] and are denoted by  


Thus

	 
Observation 1: m (b-a)≤ L(P, ƒ)≤ U(P, ƒ)≤ M (b-a).
Proof : We know 
                                                                       m ≤ mr ≤ Mr ≤ M.
         Multiplying by r both sides and then taking summation, we get 

Or                                                   m (b-a) ≤ L (P, ƒ)≤ U (P, ƒ)≤ M (b-a).
Observation 2: For every  there exits P P [a, b] such that


                    Similarly for every  , there exists P’   such that 

Proof : Follows from the definition of U (P, ƒ) and L (P, ƒ) as infimum and supremum. 
 Observation 3: If P*  is a refinement of P and  ≤ k  for all x  then,
i. L(P, ƒ) ≤ L(P*, ƒ) ≤ L(P, ƒ) 2pkand L(P*, ƒ) L(P, ƒ) ≤ (M-m)p.
ii. U(p, ƒ) ≥ U(P*, ƒ) ≥ U(P, ƒ) 2pkand U (P, ƒ)  U(P*, ƒ) ≤ (M, m)p.
Where  =  and P*  has p additional points than P.
 Proof : We first prove the result when P*  contains only one additional point say, in Ir = [xr-1, xr]. Let m’r and m”r denote the lower bounds of ƒ on [xr-1, ] and [r] respectively and let M’r and M”r, denote the upper bounds of ƒ on [xr-1, ] and [r] respectively.
     Then, clearly mr  ≤ m’r , mr  ≤ m”r , M’r ≤ Mr , M”r ≤ Mr .
          mrr = m (xr xr-1)  =  mr (xr ) mr (r-1) ≤ m’r  (xr ) m”r ( xr-1)	
          L (P*, ƒ) L(P, ƒ) =  mr  (xr ) m”r (xr-1) mr (xr r-1)
                                               =  m’r (xr )m”r (r-1) mr (xr r-1)	
                                               =  (m’r mr)(xr ) (m”r r)(x xr-1)
                                                ≥ 0 since m’r mr  ≥ 0, m”r r ≥ 0, xr ≥ 0, r-1 ≥ 0
Hence                             L(P, ƒ) ≤ L (P*, ƒ)
We see also that
                  L (P*, ƒ) L (P, ƒ) = m’r  (xr) 	m”r ( xr-1)  mr (xr r-1)
	= (m’r r)(xr  ) (m”rmr)(r-1)
	≤ 2k(xr )  2k( xr-1) = 2k(xr r-1) = 2k		
since m’r  mr ≤ 2k and m”r 	m1 ≤ 2k.
        Hence L (P*, ƒ) ≤ L (P, ƒ)	2k.
        Further,  L (P*, ƒ)  L (P, ƒ) = (m’r  mr)(xr ) (m”r  mr)(x xr-1).
                                                              ≤ (M )(xr )  (M m)(x xr-1)	
                                                              =  (M )( x xr-1) ≤ (M )                                      
Now if instead of just one, P* contains p  additional points than those of P, for each such point we get the term 2k and therefore for p points we get
               L (P*, ƒ) ≤ (P, ƒ)  2kp and L (P*, ƒ) L (P, ƒ) ≤ (M )p.
(ii ) Similar to (i).

Observation 4: If P*  is a refinement of P, then
                                                                       w(P*, ƒ) ≤ w(P, ƒ)	
Proof : By Observation 3, we have 
                                                            U (P*, ƒ ) ≤ U (P, ƒ)
                                                             L (P*, ƒ) ≥ L (P, ƒ)
           Hence   U (P*, ƒ) L (P*, ƒ) ≤ U (P, ƒ) L (P, ƒ)

Observation 5: For P1, P2  P [a, b]
                                                   L (P1, ƒ) ≤ U (P2, ƒ)
Proof : Let P = P1  P2 , then P  is a refinement of P1 and P2 as well. Hence 
                                                  L (P1, ƒ) ≤ L(P, ƒ) ≤ U (P, ƒ) ≤ U (P2, ƒ)

Observation 6: If ƒ : [a, b], then
    

Proof :  If P1 , P2   P [a, b], then
             Keeping P2 fixed and varying P1 over P [a, b], we get
                                                            L (P1, ƒ) ≤ sup L (P, ƒ) ≤ U (P2, ƒ)

i.e.     

       
                Now varying P2 over P [a, b], we get


Hence                                                    



Darboux’s Theorem:  If ƒ : [a, b] → R is bounded, then to every  > 0, there exists > 0 such that 
                                                 


and                                                  

for every P  P [a, b] with  < .

Proof : We prove only one of the inequalities. The proof of the other is similar. Since ƒ is bounded, there exists k  R such that  ≤ k for all x  [a, b]. By Observation 2, to every  there exists P1  P such that
                                                                          


Let P1 contains altogether p + 2 points which include the end points a and b.
Let  > 0 be so chosen that  = 2kp i.e. = 
Now, if P  be any partition with  <, then we shall show that P   P [a, b],
                                               

To this end, let P2 = P1 , i.e. P2 is a refinement of P1  and P.
Then by Observation 4 , we get
                                                  U (P, ƒ) ≤ U (P2 , ƒ)  2kp = U (P2, ƒ) 

Since P2  is a refinement of P1, U (P2, ƒ) ≤ U (P, ƒ)
Hence


1.2.    RIEMANN  INTEGRABILITY

We now give the definition of Riemann integration and study some necessary and sufficient conditions for Riemann integrability of a function.

Definition:  A function ƒ : [a, b]→ R is said to be Riemann integrable  over [a, b] if 

In this case the Riemann integral of ƒ over [a, b] is denoted by  or  Further  (a<b) is denoted as   provided ƒ is integrable over [a, b].
               
      We shall denote the set of all Riemann integrable functions on [a, b] by R [a, b].

      Thus ƒ R [a, b] implies (i) ƒ is bounded on [a, b] and (ii) 

Example 1 : If ƒ(x) = k for all x  [a, b], and k then ƒ[a, b].
Proof : Let P   P [a, b]. Then
                                              U (P, ƒ) = k (b-a), L (P, ƒ) = k (b-a)
Hence



and


Clearly  and ƒ is bounded. Hence the result .

Example 2: The function ƒ defined on [a, b] as
                                                            ƒ(x) =  
is not Riemann Integrable.

Solution: Let P  [a, b]. Then clearly M = Mr = 1 and m = mr = 0 for every r. Hence U (P, ) = b-a and L (P, ƒ) = 0.

Therefore,                                                   

Hence R [a, b].

Theroem 1.2.1. : (a) A function ƒ : [a, b]→ R is Riemann integrable if and only if for every  there exists P  such that w (P, ƒ) < .
        (b) A function ƒ : [a, b]→ R is Riemann integrable if and only if for every , there exists  such that for P P [a, b] with <.
                                                                       w(P, ƒ)< 	
Proof :  (a) Let ƒ R [a, b]

               Then

Let 
Then by Observation 2, there exists P  such that



Hence        

Or                                                                  


Conversely, let, for arbitrary >0, there exists P  P [a, b] such that w (P, ƒ) < 
Then

 But since

    We get,


   But  is arbitrary . Therefore   
Hence ƒ  R [a, b] .
(b) Follows similarly if Darboux’s theorem is applied in place of Observation 2.
Before we take up the integrability conditions, we make two more observations.
Observation 7: m (b-a)≤ where m and M  are the bounds of ƒ over [a, b], a<b and ƒ is Riemann integrable.
Proof : If P  [a, b], then m ≤ mr ≤ Mr ≤ M.
or                                

or                                                   m (b-a) ≤ L (P, ƒ) ≤ U (P, ƒ) ≤ M (b-a)
            In fact, if P1 , P2  P[a, b], then by Observation 5.
                                                        M (b-a) ≤ L(P1 ,ƒ) ≤ U (P2 , ƒ) ≤ M (b-a).
From this it follows, as in Observation 6.
                                                  

                  But as ƒ  R[a, b], we have
                                                              

           Corollary 1:  Denoting  we get
                                                               

           Corollary 2:  If ƒ then there exists [a, b], such that
                                                     

           Proof : Note  ≤ k  implies k ≤ ƒ ≤ k. Hence 
                                We are now in position to prove.
Theorem 1.2.2. :  If ƒ, g  R[a, b] and cR, then
· cƒ
· ƒ±g  R[a, b],
· ƒ.g [a, b],
· ƒ/g R [a, b] provided g>0 on [a, b],
·  R [a, b],
·  ƒ  g  R [a, b],
·   g  R [a, b].



Proof : Before we can take up the proof of this theorem we need to prove the following lemma.
Lemma : If ƒ: [a, b]→ R is bounded, then 0(ƒ)= sup {ƒ()} = M 
             Where 0(ƒ) denotes the oscillation of ƒ and M, m are respectively the supremum and infimum of ƒ over [a, b].
Proof of  Lemma : Clearly m  ≤ ƒ(), ƒ() ≤ M for   [a, b].
             Hence                 ≤ M for [a, b]
i.e. M is an upper bound for 
      Next, let  be arbitrary. Then as M  = sup ƒ and m = inf ƒ over [a, b], there exists 0, 0 [a, b] such that
                                                         ƒ(0) > M and ƒ(0) < m 
Hence                  ƒ(0) 0) > M  m 
This implies M  m is the supremum of  when 
i.e.                            M  m  = sup{, }.
Proof of   Theorem: (i) Since ƒ, for  > 0 there exists P[a, b] such that
	W(P, ƒ) < 
             Clearly boundedness of ƒ implies boundedness of cƒ.
Now, let Mr ’r   =  sup        where r
                                    =  sup        where r
                                    =   sup {} = (Mr r)
Hence,                  

                                                                 ==
Therefore,                                      cƒ  R[a, b]
(ii) Since ƒ,g  R[a, b], for  there exists p  P[a, b] such that w(P, ƒ)< and w(P, g)< In fact, this P is the refinement of the partitions P1 and P2  obtained for ƒ and g respectively. Clearly ƒ is bounded.
      Now, if Mr, mr denote respectively the supremum and infimum of ƒg on Ir.
       M’r, m’r denote respectively the supremum and infimum of ƒ on Ir and M’r,m’r denote respectively the supremum and infimum of g on Ir, then
                                             Mr mr = sup {}     where Ir  
                                                             ≤ sup {}  sup {}        where r
                                                              = M’r m’r  M’r r
Hence                                

                                                           
                                                                                           

                                  
                                                                                            = w(P, ƒ) w(P, g)<  = 
Therefore,                                   ƒg   R [a, b]
Next, since g  R [a, b] implies  g  R [a, b] by (ƒ),
                               ƒg  =  ƒ  R [a, b].
(iii) We know ƒ, g[a, b] implies ƒ and g are bounded on [a, b].
Let k, k’ + such that  and g()≤k’ over [a, b]. Further since ƒ, g [a, b] for , there
Exists P P [a, b] such that w (P, ƒ)<k’ and w (P, g)< k.
Note, if Mr, mr denote te respectively the supremum and infimim of ƒ g on Ir.
M’r, m’r denote respectively the supremum and infimum of ƒ on Ir, and M”r, m”r denote respectively the supremum and infimum of g on Ir. Then we have
                                 Mr r  =  sup {}      where  Ir
                                                   =  sup {}
                                                   =  sup {
                                    ≤  k’ (M’r ) k(M”r m”r)
Hence,             

                                                                                            = 
Hence                                                         ƒg    R [a, b]
(iv) Since ƒ, g R [a, b] and g> 0 on [a, b], we can find k, k’, R+ such that k, 0 on [a, b].

Also, for , there exists P such that w(P, ƒ) < 2/2k and w (P, g) < 2/2k . Clearly ƒ/g is bounded.
            Now, if Mr, mr denote respectively the supremum and infimum of ƒ/g on Ir, M’r, m’r denote respectively the supremum and infimum of ƒ on Ir, M”r, m”r denote respectively the supremum and infimum of g on Ir, then

                                    Mr r =  sup          where r                 	

                                             
                                                   =  sup      where r
                                              
	 
                                                           
                                                                  
Hence,                           w(P, ƒ/g) =  
                                                              
                                                      = k’/
Hence                           ƒ/g  R [a, b]
(v) Since ƒ  R [a, b], for , there exists P  such that w (P, ƒ)< . Note boundedness of  follows easily.
Let Mr , mr denote respectively the supremum and infimum of ƒ on Ir, M’r, m’r  denote respectively the supremum and infimum of  on Ir.
Then                        
                                               M’r m’r   =   sup {}	where r 
                                                                     <  sup  {} = Mr mr.
Hence,


Hence                               R [a, b]      
(vi) Since, ƒ, g , ƒ±g  [a, b] and therefore
                                      [a, b],     
We get                   (ƒ)(ƒ)             
Hence,                                        ƒ = max {ƒ, g} = ½ {(ƒ)}  R [a, b]   
(vii) Similarly ƒ, g  implies ƒ±g        
And                                       
    Hence                             ƒ  = ½ {(ƒ)} 
We now prove        

To this end, we see

where m’r is the supremum of cƒ on Ip.
Hence if c > 0


                                                               

But if c > 0


   Thus

     Similarly, one can prove

Hence       

Next, to we prove that
                  

Since, ƒ,g, for , there exists  such that for P  [a, b], < ,  U(P, ƒ) < 
and                                                  U (P, g) < 
[In fact, we get two different partitions of [a, b] for ƒ and g, but P  is their common refinement.]
Also,

Since  is arbitrary, we get

Had we procceded with  instead of ƒ and g, we would have got

or

Combining we get

One can prove similarly

Finally we prove thatb

For this observe that ƒ and 
Hence by Observation 8, we get

Hence,

Remark 1: ƒ, g  implies ƒ = g the converse is not the true, e.g. Let 
               

And                  

Then ƒ, g but ƒ .

Remark 2: ƒ, g  implies ƒ, g  but the converse is not true.
           The example in Remark 1 above holds here also.

Remark 3: ƒ  implies  , but the converse is not true, e.g. Let 

Then  but ƒ.

Remark 4: If follows from the theorem that if ƒ , then ƒ3 . Note that the converse is not true. The example in Remark 3 holds here.

Theorem 1.2.3.  (i)  If ƒ  and a < c <  b, then
                          ƒ, ƒ 
and conversely if ƒ R [a, c] and ƒ [c, b], then ƒ  R [a, b].
Further

(ii) if ƒ  [a, b] and [c, d], then ƒ 
 Proof : (i) Leet ƒ  for > 0, there exists P [a, b] such that U (P, ƒ)  
Let P* = P . Then U (P, ƒ) ≥ U (P*, ƒ) ≥ L (P*, ƒ) ≥ L (P, ƒ)
Hence    U (P*, ƒ) ≤U (P, ƒ) .
Now, if                                         P1  =  
and                                                P2  =  
then                                               P*  =  P1 and 
                         Clearly   U (P*, ƒ) = U (P1, ƒ),
                                           L (P*, ƒ) = L (P1, ƒ)  
Hence [U (P1, ƒ)] = U (P*, ƒ)          
But since U (P1, ƒ)
                                  U (P1, ƒ)        
and                            U (P2, ƒ)  L (P2, ƒ) <
This proves that ƒ  and ƒ  
Conversely, if ƒ  and ƒ , then for  there exists P1  and P1  such that
U  [P1, ƒ] and U (P2, ƒ) .
Now, if P = P1 , then we get P  and for this P, 
                                                   U  (P, ƒ) 
Hence                                                                  ƒ         
We now prove that

  We have seen, if P1  P[a, c], P1 , then
                                               U (P, ƒ)  =  U (P1, ƒ)          
Hence, inf U (P, ƒ) ≥ inf U (P1, ƒ)         	where P 
i.e.


or

combining we get

or

since
(ii) By (i), ƒ   
This completes the proof.
 1.3  INTEGRABLE   FUNCTIONS
In this section we shall investigate the types of functions that are integrable. We begin with continuous functions and see to what extent we can librate the conditions.
Theorem 1.3.1 : Every continuous function over [a, b] is Riemann integrable.
Proof : Let ƒ  Then ƒ is bounded and uniformly continuous over [a, b].
     Hence for  there exists  such that
                                    whenever
                                  
Then                        Mr < 
Let P  and  <  Then 
                  

                                                                                   

                                                                                    
            Hence ƒ  R [a, b].

Theorem 1.3.2 : A bounded function, continuous except at finitely many points of [a, b] is Riemann integrable on [a, b].
Proof :  Let ƒ be a bounded function, having discontinuous only at p points. We enclose these p points by very small closed intervals total length of which is less than (M) where M and m  are respectively the supremum and infimum of ƒ over [a, b]. If none of those points of discontinuity equals a and b, then we will be left with p  closed subintervals on each of which ƒ is continuous. Therefore by the above theorem, we can find a partition P1, i = 1,2, ……, p of the closed subintervals such that
                                        U (Pi, t)
Now if                                                 P = then
                

Let the second summation taken over the intervals covering the points of discontinuity

and since                                      Mr mr ≤ M
                                                                      = /2 
Hence  ƒ  R[a, b].
   
